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Fractal geometries in decay models 
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Abstract. Results of computer studies of the geometries produced by two distinct decay 
models are present. While one of the models (diffusion-limited decay) results in compact 
clusters, the other (random-walk decay) produces ramified clusters with the Hausdorf 
dimension ( d , )  equal to 1.75 * 0.03 and 2.341 0.03 in two and three dimensions respectively. 
The spectral dimension (d,) is found to be 1.68iO.13 and 1.31 ~ 0 . 0 4  for d = 2 and 3. 

There have been many recent studies of universal geometries following the pioneering 
work of Mandelbrot (1977). Examples include clusters at the percolation threshold 
in ordinary percolation (static) (see, e.g., McKenzie 1976, Stauffer 1979, Stanley 1977) 
and invasion percolation (dynamic) (Chandler et a1 1982, Wilkinson and Willemsen 
1983). More recently considerable attention has been focused on growth models. It 
has been demonstrated that diffusion-limited aggregation (Witten and Sander 198 I ,  
Meakin 1983a, b, Kolb et a1 1983, Muthukumar 1983, Gould et al 1983) leads to 
ramified clusters in contrast to the compact structures obtained by the Eden growth 
process (Eden 1961, Peters et a1 1979). The reserve process of the decay of a given 
structure is of considerable interest in such diverse fields as biology and corrosion 
chemistry. In this paper we report the results of the first studies of the decay of compact 
clusters. 

Our numerical studies have been carried out on a two-dimensional lattice for two 
decay models namely random-walk decay (RWD) and diffusion-limited decay ( DLD). 
The starting point for the modelling is a regular two-dimensional compact lattice of 
L2 particles ( A )  placed on a larger lattice with the same lattice spacing. We now 
consider the annihilation of the A particles by a diffusing reagent E introduced at 
some site of the larger lattice far away from A. The fundamental difference between 
the RWD and the DLD models is in the annihilation potency of the reagent B. In the 
first case we model the decomposition of structures by autocatalytic enzyme reactions 
(Wold 1971), corrosion etc, by postulating that a single B particle is capable of 
annihilating an infinite number of A particles. In contrast, the DLD model assumes 
that any B particle can annihilate only one A particle. 

The DLD model can be thought of as a model for the reverse process of diffusion- 
limited aggregation (DLA). B particles are introduced, one at a time, far away from 
A. The particle undergoes diffusion until it encounters one of the A particles. The A 
and B particles annihilate each other and the next E particle is now introduced into 
the system. The DLD is followed as a function of the number of A particles remaining 
on the lattice. During the decay process, the radius of gyration, R,, defined by 
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of the largest connected cluster is computed. Here, NI is the total number of particles 
in the cluster and  r, is the position vector of the ith particle measured from the centre 
of mass of the cluster. 

Our DLD simulations have been carried out on a square lattice for L = 128, 96, 64 
and 32. For each of these L values, the root-mean-square radius of gyration of the 
largest cluster has been computed as an  average over 10 realisations for = 0.875, 
0.75, 0.625, 0.5, 0.375, 0.25 and  0.125. 0 is the coverage defined as the fraction of the 
remaining A particles. We find that in all of the above cases this unreacted cluster is 
compact within the statistical error with the Hausdorf dimension d f  

It is not unexpected that the original compact A cluster does not become ramified 
due to this decay process. The reagent particles B are effectively screened from entering 
the interior of the cluster and almost entirely react at the surface. It is interesting to 
ask what the DLD model would yield if the original cluster were not compact. In 
particular, if the original cluster were one obtained by the process of DLA, one might 
speculate that the process of DLD would lead to the DLA process running in reverse. 

We now turn to the RWD model. Operationally, the simulation is identical to the 
DLD model described above with the following important differences. ( 1 )  Since a single 
B particle is capable of annihilating an  infinite number of A particles, only one B 
particle is introduced into the lattice. ( 2 )  Once the B particle encounters the A cluster, 
it is assumed that for the motion of the B particle the lattice has L2 sites, corresponding 
to the sites originally occupied by the A particles, with periodic boundary conditions. 
(3) The B particle then undergoes a random walk annihilating all the A particles it 
encounters. The walk of B is taken to be purely random so that no restriction is placed 
on B returning to sites it has already visited. (4) This procedure is continued until the 
decay threshold is reached at which point the A particles form a connected cluster 
which barely pervades to all the boundaries. (5) Discarding all smaller clusters, we 
analyse the geometry of the barely pervading cluster. We compute the density-density 
correlation function of the N,  particles in the cluster 

2. 

1 
C ( r ) = - z p ( r ’ ) p ( r ’ + r )  

N,  r ’  

p ( r )  is defined to be 1 for the occupied site and  0 otherwise. 
Figure 1 shows (C(  r ) )  averaged over 50 such simulations starting with a compact 

object of 96 x 9 6  particles on a square lattice. The data are consistent with an  algebraic 
decay of ( C ( r ) )  for r greater than a few lattice spacings. ( C ( r ) )  levels off for r 
comparable to the size of the compact cluster because of the periodic boundary 
conditions. To estimate the statical error due to the averaging over 50 realisations, we 
have carried out three other batches of 50 realisations for L = 96. Similar decay studies 
for a compact object of 63 x63 particles have been carried out to study the effects of 
finite sizes. We have carried out identical studies to that described above for a triangular 
lattice, as well. A summary of our results is shown in figure 2. The data of the various 
batches of different sizes and  lattices shown in the figure have been shifted by an  
arbitrary amount with respect to each other along the log C ( r )  axis so that they all 
overlap for one particular value of r. All the results are consistent with a power law 
decay of (C(  r ) )  

(3) 
Since the dependence of ( C ( r ) )  on the Hausdorf dimension d f  describing the geometry 

( C (  r ) )  - r-0.2’*003 
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Figure 1.  Plot of loglo(C(r))  against r for R W D  on a 9 6 x 9 6  square lattice. The average 
as been taken over 50 realisations 
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Figure 2. Plot of r against log,,,(C(r)) for RWD for different lattices and different sizes. 
C = square lattice, L = 96 ;  A =triangular lattice, L = 96;  0 =square lattice, L = 6 3 ;  A = 
triangular lattice, L = 63. To facilitate easy comparison, the curves corresponding to the 
different symbols have been shifted with respect to each other in the log(C(r))  direction. 

of the pervading cluster is (C (  r ) )  - r d f - d  

df = 1.75 f 0.03. (4) 

Within the accuracy of the simulations, df appears to be universal with respect to the 
lattice details and the size of the compact cluster. Figure 3 shows a typical decay 
cluster obtained on a square lattice with L =  148. 
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Figure 3. RWD clusters (in black) on a 148 x 148 square lattice at the decay threshold. Our 
analyses have been carried out only on the pervading cluster. 

We have carried out similar studies in d = 3 on a simple cubic lattice containing 
up tc  50 x 50 x 50 sites. Our results are summarised in table 1. We have also carried 
out calculations of the spectral dimension (Alexander and Orbach 1982, Rammal and 
Toulouse 1983) d, = 2dJd, in both d = 2 and 3. d, is the dimension of a random walk 
on the fractal, defined by N,- ([w)dW where 5, is the RMS displacement of a random 
walker after N, steps. d, may also be directly calculated using the relationship 
N, - (N,)‘s’* where N, is the mean number of sites visited in N,  steps (Rammal and 
Toulouse 1983). It has been suggested that homogeneous fractals (Leyvraz and Stanley 
1983) such as percolation clusters (Alexander and Orbach 1982) and Witten-Sander 
aggregates (Meakin and Stanley 1983) may possess a superuniversality in that d, is 
independent of d. Our calculations show that the RWD clusters do not have this 
property. Curiously, d, is found to decrease on increasing d from 2 to 3. 

Our results were obtained by taking ten clusters each in d = 2 and 3 each containing - 10 000 sites. 2000 walks of 400 steps each were carried out on each of the clusters. 
For example, figure 4 shows double logarithmic plots of 6: against N ,  and N, against 
N ,  in d = 2. Table 1 lists the values of d, obtained directly from the decay of the 
correlation function and by using the formula d, = 2dJ d,. Both methods yield con- 
sistent results. 

In summary, we have carried out numerical studies of the geometries produced by 
two distinct decay models. In the case of the DLD model, compact clusters were 
obtained whereas the RWD model produces ramified clusters. The superuniversality 
hypothesis does not seem to hold for these clusters. Further, the fractal dimensionality 
is different from those obtained in percolation/invasion percolation or in any of the 
growth models leading to yet another universality class of model geometries. 

Table 1. Summary of exponents obtained for RWD fractals in d = 2 and 3. 

ds 4 
d d, dw (Measured directly) ( =2d, /dw) 

2 1.75 * 0.03 2.17 f 0. I 1  1.68*0.13 1.61 zk0.12 
3 2.34 * 0.03 3.56 * 0.28 1.3 1 * 0.04 1.31 *0.11 
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Figure 4. Double logarithmic plots of ( a )  mean-square end-to-end distance R 2 ,  and ( b )  
the mean number of sites visited, Nc,  against the number of steps in the walk, N, for 
random walks on d = 2 RWD fractals. 
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Note added in proof: B Mandelbrot has kindly pointed out that the RWD cluster formation process resembles 
the Brown hull constructions (Mandelbrot 1977, pp 242-3). However, RWD, unlike the Brown hull, stops 
at the decay threshold. Nevertheless, it is possible that despite this difference, the interior of the RWD 
cluster becomes compact as the sample size is increased, with only the boundary remaining fractal. 
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